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Acute HIV-1 infection depletes CD41 T cells in gut-associated lymphoid tissue (GALT). The failure of containment of local
viral replication, and consequent CD41 T cell depletion, might be due to delayed mobilization of effector CD81 T cells or
absence of functioning HIV-1-specific CD81 T cell effectors within GALT. No studies have addressed human intestinal
HIV-1-specific CD81 T cell functions. We sought to determine whether functional HIV-1-specific CTL were present in GALT
and whether the repertoire differed from HIV-1-specific CTL isolated from peripheral blood mononuclear cells. From three
HIV-1-infected subjects, we isolated HIV-1-specific CD81 T cells expressing the mucosal lymphocyte integrin CD103 from
GALT. These antigen-specific effector cells could be expanded in vitro and lysed target cells in an MHC class I-restricted
manner. HIV-1-specific CTL could be isolated from both duodenal and rectal GALT sites, indicating that CD81 effectors were
widespread through GALT tissue. The breadth and antigenic specificities of GALT CTL appeared to differ from those in
peripheral blood in some cases. In summary, we found HIV-1-specific CD81 effector T cells in GALT, despite HIV-1-induced

1 1
CD4 T cell lymphopenia. This suggests that HIV-1-specific CTL in gut tissue can be maintained with limited CD4 T cell help.
© 2000 Academic Press
INTRODUCTION

The gut-associated lymphoid tissue (GALT) is the larg-
est lymphoid tissue in the human body and harbors a
majority of the body’s lymphocytes (Mowat and Viney,
1997). Defining the mucosal immune response to HIV-1
is of critical importance for several reasons. First, diar-
rhea and wasting syndromes are prevalent in AIDS pa-
tients worldwide and particularly in developing countries
(Ullrich et al., 1998). Second, the gastrointestinal (GI)
tract is a frequent site of AIDS-associated opportunistic
infections and malignancies and also serves as a major
portal of entry for HIV-1 (Chui and Owen, 1994; Zeitz et al.,
1996). Third, several studies have documented active
replication of HIV-1 in GALT tissues, as measured by p24
expression (Fackler et al., 1998; Kotler et al., 1991) or viral
RNA levels (Markowitz et al., 1999; Smith et al., 1994);
therefore, the GI tract serves as an important reservoir
for replicating virus.

GALT tissue is both anatomically and immunologically
distinct from peripheral lymphoid tissue, and little infor-

1 To whom correspondence and reprint requests should be ad-
ressed at the Aaron Diamond AIDS Research Center, 455 First Ave-

ue, 7th Floor, New York, NY 10016. Fax: (212) 725-1126. E-mail:
shackle@adarc.org.
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mation is available regarding trafficking of lymphocytes
between these two compartments, either in control indi-
viduals or in virally infected subjects (reviewed in Mowat
and Viney, 1997). Lymphocyte homing to mucosal tissues
apparently requires expression of b7 integrins (Lefran-
cois et al., 1999), and tethering of intestinal intraepithelial
lymphocytes (IEL) to adjacent epithelial cells may require
expression of CD103 (aEb7 integrin) (Cepek et al., 1994).
Studies in nude mice have established that a portion of
murine intestinal lymphocytes mature extrathymically
(reviewed in Lefrancois, 1991), perhaps in specialized
areas of the lamina propria designated cryptopatches
(Saito et al., 1998). In humans, some studies suggest that
extrathymic T cell maturation may take place; however,
this issue remains controversial (Howie et al., 1998;
Lundqvist et al., 1995; Lynch et al., 1995; Taplin et al.,
1996). Nevertheless, because of the anatomical and
functional distinction between peripheral and mucosal
tissues, and since GALT itself is a site for HIV-1 replica-
tion, the possibility exists that mucosal cellular immune
responses to HIV-1 will be significantly different from
those in peripheral blood.

Studies in rhesus macaques have shown that GALT
tissue rapidly becomes infected with simian immunode-
ficiency virus (SIV), even when animals are infected in-

travenously (Heise et al., 1994). Potential target cells for
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318 SHACKLETT ET AL.
HIV-1 and SIV replication in GALT include macrophages
and activated T lymphocytes in the lamina propria (Heise
et al., 1994; Lapenta et al., 1999), as well as dendritic
cells in intestinal lymphoid follicles (Jarry et al., 1990;
Pope, 1999). Lamina propria CD41 T lymphocytes (LPL)
were recently demonstrated to be permissive for both
CXCR4- and CCR5-utilizing strains of HIV-1 (Lapenta et
al., 1999). When virus enters the body directly via muco-

al surfaces, rather than parenterally, it must first cross
he epithelial layer to reach the underlying lamina propria
r lymphoid follicles. Proposed mechanisms have in-
luded uptake by epithelial cells via an alternative recep-

or such as galactosyl ceramide (Fantini et al., 1991) or Fc
eceptors (Hussain et al., 1991), by transcytosis (Bomsel,
997), or through uptake by microfolded dome cells (M
ells) (Amerongen et al., 1991) overlying the follicles.

In HIV-1-infected individuals, the most dramatic phe-
notypic alteration in GALT lymphocyte populations is the
loss of CD41 T cells from the lamina propria of both

uodenal and colorectal mucosa, concurrent with a rise
n the CD81 T cell population in these areas (Schneider
t al., 1994, 1995). In rhesus macaques intravenously

inoculated with pathogenic SIV, dramatic declines were
also observed in CD41 intestinal LPL; this occurred as
early as 7 days postinoculation (Mattapallil et al., 1998;
Veazey et al., 1998). Coincident with the acute decline in
mucosal CD41 cells was an increase in absolute num-

ers of CD81 T cells, primarily IEL, in intestinal tissues
(Mattapallil et al., 1998; Veazey et al., 1998). These CD81

cells were found to secrete interferon-g (IFN-g) and the
chemokine MIP-1b (Mattapallil et al., 1998) and to have
SIV Gag- and Env-specific cytotoxic activity in chromium
release assays.

Two additional studies have documented the pres-
ence of SIV-specific cytotoxic effector cells in GALT of
rhesus macaques. SIV-specific cytotoxic lymphocytes
(CTL) were identified in IEL from the small intestine of
two chronically infected rhesus macaques; these cells
expressed CD8 and the mucosal lymphocyte integrin
CD103 (Couedel-Courteille et al., 1997). More recently,
Murphey-Corb et al. demonstrated a positive correlation

etween the presence of SIV Env-specific CTL in jejunal
amina propria and protection from intrarectal challenge

ith SIV/DeltaB670 (Murphey-Corb et al., 1999). These
results suggest that infected individuals mount a signif-
icant mucosal cellular immune response to immunode-
ficiency viruses and that mucosal CTL may be an impor-
tant correlate of vaccine protection.

Clearly, an understanding of the quantitative and qual-
itative aspects of the mucosal cellular immune response
to SIV and HIV-1 will be important for development of
effective immunization strategies. Although studies of
the human mucosal immune response to HIV-1 are ur-
gently needed, the technical difficulties inherent in main-
taining GALT-derived lymphoid cells in culture have thus

far prevented extensive studies in this area. In this re-
port, we demonstrate the isolation and culture of HIV-1-
specific CTL from intestinal biopsy tissue obtained by
flexible sigmoidoscopy and endoscopy. To our knowl-
edge, this is the first report of HIV-1-specific, MHC class
I-restricted CTL obtained from human intestinal biopsy
tissue.

RESULTS

Patient clinical information

Three HIV-1-infected patients were studied. Both phe-
notypic and functional analyses were carried out on
intestinal mononuclear cells (MNC) from two patients,
CM01 and CM02. GALT-derived MNC from one addi-
tional patient, CM03, were analyzed by flow cytometry for
the expression of lymphocyte surface markers. Clinical
information for the three patients is summarized in Table
1. Patient CM01 was infected with HIV-1 in 1984 and had
a history of AIDS-related pathology including non-
Hodgkins lymphoma, Cryptosporidium infection, and pe-
ripheral neuropathy. This patient had suppressed plasma
viremia (i.e., fewer than 50 copies/ml) and a peripheral
CD41 count of 531 cells/ml at biopsy. Patient CM02 be-
came infected with HIV-1 in 1993. His viral load was
124,696 copies/ml at the time of biopsy, and his CD41

count was 26 cells/ml. Patient CM03 was infected with
HIV-1 in 1996; he had a history of wasting syndrome,
neuropathy, encephalopathy, and severe dementia (re-
solved) as well as infections with Candida, Toxoplasma,
and Mycobacterium avium. His viral load at biopsy was
237 copies/ml and his CD41 count was 331 cells/ml.

atients CM01 and CM03 were undergoing highly active
ntiretroviral therapy (HAART) at the time of biopsy; pa-

ient CM02 had undergone HAART but voluntarily dis-
ontinued treatment several weeks prior to biopsy.

solation and phenotyping of GALT-derived
ononuclear cells

Mononuclear cells were obtained by manual disrup-
ion of biopsy tissue using sterile forceps. The number of
ells obtained by this method was too low (,2 3 106

cells) to allow thorough analysis by both flow cytometry
and immunologic assays; therefore, we chose to expand
mononuclear cells by polyclonal stimulation with anti-
CD3 monoclonal antibody (12F6) and allogeneic g-irra-
diated feeder cells. MNC cultures were evaluated by flow
cytometry approximately 3 to 6 weeks after initiation (Fig.
1; Table 2). Mononuclear cells derived from peripheral
blood of the same patients were processed in parallel,
using the same polyclonal expansion technique; these
results are also shown in Table 2.

It should be noted that the in vitro expansion method
utilized here may favor outgrowth of specific subpopula-
tions at the expense of others. In most cases, rectal and

duodenal cultures contained primarily CD81 T cells after
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319HIV-1-SPECIFIC CTL IN RECTAL AND DUODENAL TISSUE
polyclonal expansion (range 60.4 to 94.4% for patients
CM01 and CM02) (Table 2). Rectal cultures from patient
CM03 were enriched in CD41 cells (range 44.7 to 63.8%).
We did not attempt to segregate IEL and LPL populations
during the initial processing of biopsy tissue; therefore,
our cultures likely contained lymphocytes from both his-
tologic regions. IEL in uninfected individuals are predom-
inantly CD81 (Mowat and Viney, 1997). LPL in uninfected
individuals have a CD4:CD8 ratio similar to that observed
in peripheral blood, but CD41 LPL are sharply depleted
in HIV-1-infected individuals (Mowat and Viney, 1997;
Schneider et al., 1994, 1995).

Reports on the expression of aEb7 integrin (CD103) by
GALT MNC have varied, but in healthy individuals this
antigen is believed to be expressed on 60–80% of IEL in
situ and roughly 40% of LPL (Lundqvist et al., 1995). In
AIDS patients, expression of CD103 by GALT-derived
MNC was reportedly decreased from a mean of 41% in
controls (range 31–54%) to 22% (range 16–59%) (Schnei-
der et al., 1994); this reduction was attributed to profound
depletion of mucosal CD41 T cells. In our expanded

ultures, expression of CD103 was markedly increased
n GALT-derived MNC (5.2 to 43.7%), relative to periph-
ral blood MNC from the same patients (0.9 to 1.6%) that
ere expanded and cultured in the same manner (Table

). A comparison of CD103 surface staining in MNC
erived from GALT and peripheral blood of patient CM02

s shown in Fig. 1A. Although enhanced expression of
D103 by peripheral blood MNC has been reported

ollowing PHA stimulation (Schieferdecker et al., 1990), in
he present study expression of this antigen by PBMC

as restricted to fewer than 2% of polyclonally stimu-
ated, cultured cells. Given the bulk of the original tissue
amples and the extensive washing procedures used to

T

Patient Cli

Patient
ID

Sex,
age

Virus
loada Risk factors

Date
HIV1

CM01 M, 46 ,50 Homosexual
contact

1984

CM02 M, 39 124,696 Heterosexual
contact

1993

CM03 M, 48 237 Homosexual
contact

1996

a Virus load at time of biopsy, expressed as viral RNA copies/ml o
copies/ml (see text).

b CD41 count in peripheral blood at time of biopsy.
emove trace amounts of blood prior to culture, we be-
ieve that contamination of our GALT MNC cultures with
lood-derived MNC was minimal.

GALT-derived MNC in our cultures expressed primar-
ly (generally .90%) the TCRab isotype. Intestinal MNC

contained higher percentages of TCRgd cells (range 0.7
to 23.1%) than cultures derived from peripheral blood
(range 0.2 to 0.6%). In particular, three GALT-derived
cultures from patient CM03 contained .10% TCRgd cells
(Table 2; Fig. 1B). The enhanced expression of TCRgd
chain by GALT-derived MNC populations further sug-
gested that these cells were not derived from contami-
nating peripheral blood but were indeed of intestinal
origin.

Following stimulation with anti-CD3, flow cytometry
analysis revealed greater than 95% CD31 lymphocytes in
most cultures; however, two duodenal cultures from pa-
tient CM03 contained 7–11% CD32 cells (Table 2). These
cultures also contained .5% MNC coexpressing natural
killer (NK) cell markers CD56 (neural cell adhesion mol-
ecule) and CD16 (FcgRIII) (Table 2). Coexpression of
these markers in most other cultures was less than 1%.
Expression of CD57 was detected in expanded cultures
of both mucosal and peripheral blood MNC, frequently
on cells also expressing CD3 and CD8 (not shown).
Classical NK subsets expressing CD56 and CD16 or
CD57 in the absence of CD3 are reportedly reduced in
blood and mucosal tissues of HIV-1-infected individuals
(Hu et al., 1995; Margolick et al., 1991; Schneider et al.,
1994). However, a subset of cells expressing both CD8
and CD57 is expanded in the peripheral blood of AIDS
patients (Lewis et al., 1985) and may inhibit cytotoxicity
via a soluble factor (Sadat-Sowti et al., 1994). Cells ex-
pressing CD81 low/CD571 may function as NK cells in

formation

CD4
ells/mlb AIDS-related illnesses

Antiretroviral
therapy

531 Non-Hodgkins lymphoma,
Cryptosporidium,
peripheral neuropathy

Saquinavir
Nelfinavir
Nevirapine

26 Severe CD41 cell depletion D4T
3TC
Indinavir

(discontinued)
331 Neuropathy, encephalopathy,

severe dementia
(resolved), Mycobacterium
avium complex, Candida,
CNS toxoplasmosis,
wasting syndrome

D4T
3TC
Indinavir

a. Virus load was determined by Roche RT-PCR, detection limit 50
ABLE 1

nical In

c

f plasm
immune surveillance of cytomegalovirus infections,
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320 SHACKLETT ET AL.
which are common in AIDS patients (Wang and Bo-
rysiewicz, 1995).

Rectal MNC from patient CM01 contained
HIV-1-specific CTL

Approximately 3 weeks after in vitro stimulation, ex-
anded MNC from GALT tissue of patient CM01 were
ssessed for cytotoxic activity in standard 51Cr release

assays (Coligan et al., 1999). Preliminary testing of MNC
derived from rectal tissue against a panel of allogeneic
HLA-matched and -mismatched B lymphoblastoid cell
lines (B-LCL) showed mild to moderate killing (10 to 35%
specific lysis at E:T ratios from 10:1 to 30:1) of targets
expressing HIV-1 Gag, Pol, and Nef (not shown). Addi-
tional experiments using a series of B cell lines sharing

FIG. 1. Expression of CD103 and T cell receptor gd chain by cultured
NC. (A and B) Results of four-color flow cytometry experiments

erformed on a FACSCalibur instrument (Becton–Dickinson). (A) Poly-
lonally expanded MNC cultures from peripheral blood (right) and
ALT (left) of patient CM02 were analyzed for expression of T cell
arkers CD3, CD4, and CD8 and mucosal adhesion/retention marker
D103 (aEb7 integrin). In the experiment shown, cells were gated on

orward scatter versus side scatter and assessed for expression of
D8 and CD103. Numbers shown in the upper right quadrant indicate

he percentage of cells expressing both CD8 and CD103 in these
opulations. (B) Polyclonally expanded MNC cultures from blood (right)
nd GALT (left) of patient CM03 were assessed for expression of CD3,
D4, and CD8 and T cell gd receptor. Most gd cells were found among
D42/CD82 double-negative T cells. The numbers shown in the upper

left quadrant indicate the percentage of CD8-negative cells expressing
TCRgd. Quadrant markers were established based on staining with

ppropriate isotype controls (not shown).
individual MHC class I alleles with donor CM01 were
used to define the MHC restriction of the observed CTL
activity. Figures 2A and 2C show the results of two such
assays. For these experiments, target B-LCL shared ei-
ther HLA-A*0201 or HLA-Cw*08 with donor CM01. HLA-
A*0201-restricted cytotoxic activity was directed toward
target cells expressing either Pol or Nef, and HLA-
Cw*08-restricted killing was directed toward B-LCL ex-
pressing Nef, Gag, or Pol. For the experiments shown in
Fig. 2, lysis of control vaccinia-infected target cells
ranged from 0 to 7%; results are expressed as percent-
age specific lysis after subtracting lysis of control cells.
For all 51Cr release assays, lysis was considered signif-
icant when specific killing of target cells expressing
HIV-1 antigens (after subtracting control lysis) was
$10%. No specific killing was observed against target
cell lines matched at HLA-A*32 or HLA-B*14, the other
MHC class I alleles expressed by donor CM01 (not
shown). In parallel assays, blood-derived MNC from pa-
tient CM01 exhibited HLA-A*0201-restricted killing of tar-
get cells expressing HIV-1 Pol, Gag, and Nef (Fig. 2B) and
HLA-Cw*08-restricted killing of target cells expressing
HIV-1 Gag (Fig. 2D). Lysis of MHC class I-mismatched
target cells expressing HIV-1 antigens was less than
10%.

Duodenal MNC from patient CM02 contained
HIV-1-specific CTL

Blood and GALT-derived MNC from patient CM02
were assessed for cytotoxic activity against a panel of
six allogeneic HLA-matched B-LCL. Of the GALT-derived
cultures, two duodenal populations demonstrated repro-
ducible, moderately strong lysis of B-LCL expressing
HIV-1 antigens. Duodenal culture D1 (Fig. 3A) showed
greater than 30% specific lysis of target cells expressing
HIV-1 Pol at an effector:target ratio of 50:1. Although
single-allele-matched B-LCL were not available for pa-
tient CM02, assessment of culture D1 effector cells ver-
sus a panel of four B-LCL suggested that the Pol-specific
cytotoxic response was restricted by HLA-B*45 (Fig. 3B).
Another duodenal culture, designated D4, showed 41%
specific lysis of HIV-1 Gag-expressing targets at an E:T
ratio of 30:1 (Fig. 3C); lysis of control cells was 4%.
Assessment of D4 effector cells against a panel of three
HLA-matched target cells suggested restriction of this
response by the HLA-B*15 allele. To confirm these re-
sults, CD81 effector cells were purified from culture D4
using magnetic beads linked to anti-CD8 antibody. The
CD8-enriched population was used at an E:T ratio of 25:1
in a 51Cr release assay (not shown). Specific lysis of
HIV-1 Gag-expressing target cells in this assay was 17%,
confirming that CD81 effector cells played a significant
role in the observed Gag-specific killing. The reduction in
specific lysis from 41 to 17% suggested that other cyto-

toxic effector cell populations were also present in this
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culture. Additional studies will be required to identify
these populations.

Blood-derived MNC from patient CM02 showed no
specific lysis of any of the six HLA-matched B-LCL in 51Cr
release assays (not shown). Lysis of control vaccinia-
infected cells in these 51Cr release assays was unusually

igh (20–50% or higher, depending upon E:T ratios), sug-
esting the presence of CTL directed toward vaccinia or
pstein–Barr virus antigens or possibly natural killer cell
ctivity.

uodenal MNC from patient CM02 secreted IFN-g in
response to antigenic stimulation

To confirm and further characterize the CTL activity
detected in duodenal cultures from CM02, we performed
an IFN-g ELISPOT assay. Mononuclear cell cultures de-
rived from blood and duodenum (culture D4) were in-
fected with control (tk2) vaccinia virus or recombinant
vaccinia expressing HIV-1 Gag (Larsson et al., 1999).
Cells producing IFN-g were detected by monoclonal an-
tibodies specific for human IFN-g, linked to horseradish

eroxidase. Results (Fig. 3D) demonstrated that duode-
al MNC from CM02 contained a high frequency (greater

han 1000 spot-forming cells (SFC) per million MNC after
ubtracting background spots) of Gag-specific IFN-g

SFC, while blood-derived MNC from the same patient
showed almost no IFN-g production. For comparison,
blood-derived MNC from patient CM01 yielded 730 Gag-
specific SFC per 106 MNC in the same assay (not
shown). This result demonstrates that, in addition to
performing MHC class I-restricted cell killing, antigen-
reactive T cells present in culture D4 could secrete IFN-g

T

Phenotyping of GALT and Blood-Derived

Sample Biopsy site

CD3 positive lymphocyte gate

CD41 CD81 CD41/81 CD42/82

CM01.R1 Rectum 9.5 87.2 2.5 0.8
CM01.R2 Rectum 4.2 94.4 1.1 0.4
CM01 blood Blood 16.2 60.4 2.5 20.9
CM02.D4 Duodenum 1.2 69.2 0.5 29.1
CM02.R1 Rectum 1.6 79.7 1.7 17.0
CM02.R4 Rectum 0.6 87.7 0.5 11.2
CM02.R5 Rectum 1.0 92.0 1.0 5.3
CM02 blood Blood 0.3 91.8 0.6 7.3
CM03.D1 Duodenum 13.9 75.7 2.3 8.1
CM03.D2 Duodenum 17.2 66.4 0.6 15.7
CM03.R1 Rectum 63.8 27.7 0.3 8.1
CM03.R2 Rectum 44.7 48.0 0.8 6.5
CM03 blood Blood 8.6 86.7 1.3 3.4

Note. Values shown are from three- and four-color flow cytometry e
in response to HIV-1 antigen-specific stimuli.
DISCUSSION

The major finding of this paper is that HIV-1-specific
cytotoxic lymphocytes can be successfully cultured from
rectal and duodenal biopsies of AIDS patients. In the
past, functional characterization of mucosal T cells has
been limited by the technical difficulties associated with
their long-term in vitro propagation. Here, we have used
a simple polyclonal stimulation method to expand these
cells in vitro, allowing assessment of MHC class I-re-
stricted cytotoxic activity and antigen-specific IFN-g pro-
duction. To our knowledge, this is the first functional
description of anti-HIV-1 CTL activity in human intestinal
biopsy samples from HIV-1-infected individuals.

The specificities of CTL from patient CM01 were sim-
ilar in blood and GALT (Table 3). Both MNC populations
exhibited HLA-A*0201-restricted killing of Pol- and Nef-
expressing target cells, as well as HLA-Cw*08-restricted
killing of Gag-expressing targets. In the absence of CTL
clones from both blood and GALT it was not possible to
compare the fine specificities of these cultures. How-
ever, the observation of shared antigenic specificity and
MHC restriction suggested that some degree of epitope
specificity was common to CTL from both blood and
GALT of patient CM01, assuming minimal contamination
of GALT cultures with blood-derived MNC. This shared
CTL specificity also suggests that similar viral quasispe-
cies may have been present in blood and GALT of this
patient. Extensive trafficking of antigen-specific T cells
between blood and GALT is not believed to occur. Anti-
gen-specific T cells primed in GALT inductive sites are
thought to enter peripheral circulation via the thoracic
duct and eventually localize or “home” to mucosal tissues
upon expression of a4b and aEb integrins (Brandtzaeg

Cultures after Stimulation with Anti-CD3

Lymphocyte gate (FSC vs SSC)

31 CD1031 TCRab1 TCRgd1 CD561 561/161 CD571

.9 43.7 97.6 2.4 81.7 0.6 nd

.9 13.0 98.0 2.0 57.1 0.2 nd

.7 1.1 97.3 0.4 nd nd 19.0

.5 10.1 93.4 4.9 15.7 0.3 26.5

.7 5.2 90.0 3.1 10.7 0.1 31.8

.7 23.6 96.5 1.7 7.8 0.3 28.2

.7 34.2 95.1 2.4 12.1 0.7 18.1

.8 0.9 96.1 0.6 23.2 1.7 34.6

.3 17.6 60.4 23.1 13.7 6.2 32.4

.4 29.5 67.6 14.5 10.1 6.1 22.8

.4 14.8 93.5 0.7 0.9 0.2 24.9

.7 7.6 78.7 16.8 0.9 0.9 42.1

.0 1.6 84.4 0.2 2.4 2.4 16.6

ents performed as described in the text.
ABLE 2

MNC

CD

99
99
97
99
94
99
99
98
92
89
99
99
93
7 7

et al., 1999; Mowat and Viney, 1997). However, antigen-
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322 SHACKLETT ET AL.
specific T cells primed in peripheral lymphoid tissues are
not believed to localize to mucosal surfaces (Brandtzaeg
et al., 1999; Mowat and Viney, 1997).

Because this study involved long-term cultures from
only two patients it is difficult to draw broad conclusions
concerning CTL repertoire overlap between peripheral
and mucosal T cell populations. In contrast to patient
CM01, patient CM02 had CTL of limited specificity in
GALT-derived MNC cultures, but no detectable HIV-1-
specific CTL in peripheral blood. Duodenal MNC from
this patient showed lytic activity in 51Cr release assays
against B-LCL expressing HIV-1 Pol and Gag and strong
IFN-g spot-forming activity in ELISPOT assays. Blood-
derived MNC were negative in both assays. In contrast
to the findings for patient CM01, these results suggested
limited trafficking between mucosal and peripheral com-
partments and/or an absence of shared specificity in the
respective CTL repertoires. Several explanations could
be proposed to account for this observation. First, the in
vitro expansion methods utilized may favor outgrowth of
specific populations at the expense of others; in addition,

FIG. 2. HIV-1-specific CTL in blood and GALT MNC cultures from pa
blood-derived (B and D) MNC as effectors and allogeneic B-LCL match
types for B-LCL used in these experiments were (A) HLA-A*01, A*0201,
and (C and D) HLA-A*24, A*68, B*07, Cw*07, Cw*08; mismatched targe
specific lysis (y axis) after subtracting percentage lysis of control targe
atios are shown on the x axis. For the experiment shown in (D), the E
cultures were derived from a small number of lympho-
cytes and therefore may not provide a complete, repre-
sentative sampling of the CTL repertoire in intestinal
mucosa. If we accept that HIV-1-specific CTL were
present in intestinal mucosa but absent from peripheral
blood of patient CM02, possible explanations might in-
clude a difference in viral quasispecies present in GALT
versus peripheral blood (Lapenta et al., 1999), locally
enhanced viral replication, or antigen “trapping” in mu-
cosal tissues (Frankel et al., 1996).

The differences observed between patients CM01 and
CM02 might also be related to differences in HIV-1 viral
load and/or CD41 T cell counts in these individuals. Only
patient CM01 had detectable HIV-1-specific CTL in blood
(Tables 1 and 3). At the time of sampling, patient CM01
was undergoing HAART therapy and had undetectable
plasma viremia and .500 CD41 T cells/ml in peripheral
blood. Patient CM02, who had voluntarily discontinued
HAART at the time of biopsy, had .100,000 HIV-1 viral

NA copies/ml of plasma and 26 CD41 T cells/ml. As
D81 CTL responses rely upon CD41 T cell help, the

absence of HIV-1-specific CTL in peripheral blood from

01. Results of 51Cr release assays performed with rectal- (A and C) or
LA-A*0201 (A and B) or HLA-Cw*08 (C and D) as targets. The full HLA
*35, Cw*04, Cw*03; (B) HLA-A*0201, A*26, B*35, B*38, Cw*04, Cw*12;
A*29, A*26, B*38, Cw*12. Mean values are expressed as percentage

(control lysis ranged from 0 to 7% in these assays). Effector:target cell
was 25:1.
tient CM
ed at H
B*62, B
ts were
patient CM02 might be related to profound CD41 T cell
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depletion (Bennett et al., 1998; Doherty et al., 1997;
alams and Walker, 1998; Matloubian et al., 1994). Under
onditions of CD41 depletion, the priming of CTL re-

sponses in mucosal tissues might proceed by an alter-
nate mechanism, perhaps involving direct contact of
CD81 CTL with antigen-presenting cells expressing
CD40 (Ridge et al., 1998; Schoenberger et al., 1998;

piegel et al., 2000). Such a mechanism might explain
he CTL activity observed in duodenal lymphoid tissue
rom patient CM02. Additional studies will be required to
est this hypothesis.

HAART therapy has a well-documented suppressive
ffect on antiviral CTL responses in peripheral blood,
hich is thought to be related to the decline in viral
ntigen brought about by suppression of HIV-1 replica-

ion (Ogg et al., 1999). However, the effects of HAART on
TL responses in mucosal tissues have not been stud-

ed nor have the effects of HAART on HIV-1 viral load in
ucosae been thoroughly explored. HIV-1 viral load may

FIG. 3. HIV-1-specific CTL in duodenal MNC from patient CM02. (A) R
D1) as effectors and allogeneic B-LCL matched at HLA-A*0201, HLA-B
as percentage specific lysis (y axis) after subtracting lysis of control ta
experiment to determine the HLA restriction of the Pol-specific respo
experiment was 50:1. (C) Results of a 51Cr release assay using duoden
E:T ratio for this experiment was 30:1, and lysis of control cells was 4%
number of HIV-1 Gag-specific IFN-g spot-forming cells (SFC) per 106 M
of Gag-specific spots per well in duplicate wells (each containing 5 3 1
SFC per well), and adjusting to SFC per 1 3 106 cells.
ave an uneven distribution in intestinal tissues (Ullrich m
t al., 1998), with the highest concentrations in ileum and
ectum (Kotler et al., 1991). In one study, initiation of
AART within 90 days of onset of symptoms resulted in

uppression of viral replication (as measured by multiply
pliced mRNA) in GALT biopsies from 10 patients, de-
pite persistence of unspliced mRNA and proviral DNA

n these tissues (Markowitz et al., 1999). However, the
ossibility exists that mucosal and peripheral compart-
ents may respond unequally to HAART, resulting in

ifferences in viral load and CTL populations between
irculating peripheral blood and GALT.

Little is known about the induction and maintenance of
ucosal antiviral CTL responses in simian or human
IDS or in other primate viral infections. Intraepithelial

ymphocytes with CTL function have been identified in
ice experimentally infected with reovirus (London et al.,

990) and with lymphocytic choriomeningitis virus (Sy-
ora et al., 1996). Murine vaccination models have
lso helped to establish the importance of induction of

of a 51Cr release assay performed with duodenal-derived MNC (culture
d HLA-Cw*16 as targets. Mean values for 51Cr release are expressed
lls. Effector:target cell ratios are shown on the x axis. (B) Results of an
own in (A), using multiple HLA-matched B-LCL. The E:T ratio for this
re D4 as effectors and a panel of HLA-matched B-LCL as targets. The
N-g ELISPOT assay comparing blood and duodenal (D4) cultures. The
shown on the y axis. Numbers were obtained by counting the number
), subtracting the average number of spots in control wells (range 0–20
esults
*45, an
rget ce
nse sh
al cultu
. (D) IF
NC is

4

ucosal CTL for protection from mucosal challenge.
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Intrarectal immunization of mice with a recombinant vac-
cinia virus expressing HIV-1 Env resulted in protection from
mucosal transmission; this protection was dependent on
the presence of CD81 CTL at the site of challenge (Belya-

ov et al., 1998). Recently, Murphey-Corb et al. demon-
trated protection from intracolonic challenge in rhesus
acaques rectally immunized with SIV. Protection was cor-

elated with SIV Env-specific CTL in the intestinal lamina
ropria (Murphey-Corb et al., 1999). In another study, tar-
eted immunization of rhesus macaques with simian im-
unodeficiency virus immunogens via iliac lymph nodes
as shown to elicit SIV-specific CTL in rectal and cervico-

aginal mucosa (Klavinskis et al., 1996). Taken together,
hese studies underscore the relevance of the induction of

ucosal CTL to HIV-1 vaccine development. The methods
eveloped in the present report will be useful in assessing
ucosal immune responses in AIDS patients undergoing a

ariety of therapeutic regimes. Information derived from
uch studies will provide important information that should
ontribute to the development of more effective vaccine
trategies.

MATERIALS AND METHODS

iopsy and blood samples

Three HIV-1-positive individuals with chronic diarrhea
ere studied. After an initial examination, patients were
nrolled in a study designed to assess the effects of

halidomide therapy on HIV-1-related diarrhea. Informed
onsent was obtained from all patients, and the study
rotocol was approved by the Institutional Review
oards of participating institutions. Patients CM01 and
M02 were biopsied prior to initiation of thalidomide

reatment, while patient CM03 was biopsied at the con-
lusion of therapy.

Rectal biopsy tissue was obtained by flexible sigmoid-
scopy from sites located in the rectum at 10 cm from the

T

Summa

Patient ID

HLA type

HLA-A HLA-B HLA-C

CM01 02, 32 14 08

CM02 02, 24 15, 45 03, 16

CM03 02, 03 27, 52 02, 12

Note. na, not analyzed.
nal verge. A flexible sigmoidoscope with a biopsy chan-
el (ES-3830, Pentax Corp.) was used with jumbo biopsy
orceps (Olympus FB-50U-1) for rectal biopsies. Duode-
al biopsy tissue was obtained by upper endoscopy from
ites located in the second portion of the duodenum.
pper endoscopes were Pentax Models EG-2901 or EG-
731, with jumbo biopsy forceps (Olympus FB-50K-1).
wo to five tissue samples were taken at each location.

Blood samples were obtained at the time of biopsy.
lasma was stored at 280°C for virus load determina-

ion. Viral RNA was quantified using an ultrasensitive
T-PCR assay (Roche Diagnostics), with a detection limit
f 50 copies/ml plasma (Mulder et al., 1994). Class I HLA

yping (A, B, and C alleles) was determined by polymer-
se chain reaction in a 96-well plate format using com-
ercial HLA typing kits (Pel-Freez, Brown Deer, WI).

ononuclear cell preparation

Tissue biopsies were washed five times in RPMI me-
ium containing 15% fetal calf serum (FCS), L-glutamine,

and antibiotics (designated R-15 medium). Each individ-
ual tissue sample was gently minced with forceps and
blunt scissors and washed five additional times with
R-15. Coarse cell suspensions obtained in this manner
were placed in R-15 containing 100 U/ml rIL-2 (Hoff-
mann–LaRoche, Nutley, NJ) and polyclonally stimulated
with 0.1 mg/ml monoclonal anti-CD3 antibody (12F6, ob-
tained from Dr. Johnson Wong, Massachusetts General
Hospital, Boston, MA) and allogeneic g-irradiated feeder
cells. Several days after stimulation, MNC were enriched
by density centrifugation on a Ficoll–Hypaque solution
(Pharmacia, Uppsala, Sweden). MNC were transferred
sequentially from 96-well to 24-well plates and finally to
25-ml flasks when sufficiently expanded. Cultures were
designated “R” (rectal-derived) or “D” (duodenal-derived).
When necessary, some cultures were treated with am-
photericin B to inhibit the growth of fungi and yeast.

Peripheral blood mononuclear cells were separated

esults

MHC class I-restricted CTL activity

Tissue MHC restriction HIV antigens

Blood HLA-A*0201 Pol, Gag, Nef
HLA-Cw*08 Gag

Rectal HLA-A*0201 Pol, Nef
HLA-Cw*08 Pol, Gag, Nef

Blood None None
Rectal None None
Duodenal HLA-B*45 Pol

HLA-B*15 Gag
na na
ABLE 3

ry of R
from whole blood using Ficoll–Hypaque separation. Bulk
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cultures were obtained by polyclonal simulation with 0.1
mg/ml monoclonal anti-CD3 antibody (12F6), as de-
scribed above. Cultured T cells were maintained for up to
4 months by restimulating every 3 to 4 weeks with anti-
CD3 antibody (without additional feeder cells) and feed-
ing twice weekly with R-15/IL-2.

Chromium release assays for CTL activity

GALT and peripheral blood-derived MNC were
tested in chromium release assays for CTL activity
(Coligan et al., 1999). For CTL assays, HLA-A, B, or C

atched or mismatched B-LCL were infected with
ecombinant vaccinia viruses expressing HIV-1 (IIIB)
ntigens (vAbT 299 Env, vAbT 141 Gag, vAbT 204 Pol,
T23 Nef), obtained from Therion Biologicals (Cam-
ridge, MA), or control. Control vaccinia virus was a

k(2) strain with insertional inactivation of the thymi-
ine kinase gene. Cells were infected at a multiplicity
f infection (m.o.i.) of 5:1 for 1 h at 37°C, 5% CO2.

Target cells were then labeled overnight at 37°C, 5%
CO2 with 100 mCi of Na2

51CrO4 (New England Nuclear,
Boston, MA). Standard 51Cr release assays were per-
ormed by mixing labeled target cells (3000 to 5000 per

ell) with effector cells at ratios varying from 50:1 to
:1, in duplicate or triplicate wells of a 96-well micro-

iter plate. Assays were incubated for 4 to 5 h, at which
ime 30 ml of supernatant was transferred to the cor-
esponding wells of a Lumaplate (Packard Instru-

ents, Meriden, CT) using an automated Bio-Mek
000 workstation (Beckman Instruments, Fullerton,
A). Plates were air-dried and counted on a TopCount
cintillation counter (Packard Instruments). The per-
entage specific 51Cr release was calculated accord-

ing to the following formula: % specific release 5
[(experimental release 2 spontaneous release)/(max-
imal release 2 spontaneous release)] 3 100. Sponta-
neous release was determined from wells containing
labeled target cells and medium, and maximal release
was calculated from wells containing target cells and
1% Triton X-100. CTL responses were considered sig-
nificant under the following conditions: (1) the sponta-
neous release was less than 25% and (2) the percent-
age specific release of target cells expressing HIV-1
antigens was $10% above the percentage specific
release of target cells infected with control vaccinia
virus. Specific release for control target cells was
generally below 10%, except where otherwise indi-
cated.

CD8-expressing cells were positively selected by ad-
herence to anti-CD8 magnetic beads following the man-
ufacturer’s protocol (Dynabeads; Dynal, Great Neck, NY).
The magnetic beads were subsequently removed using
Detach-a-Bead (Dynal). CD8-enriched cells were then
washed and used as effectors in standard 51Cr release

assays.
ELISPOT assay

An ELISPOT assay was used to measure IFN-g re-
lease by cytotoxic CD81 T cells (Larsson et al., 1999).

inety-six-well nitrocellulose-bottom microtiter plates
Multiscreen-HA; Millipore, Molsheim, France) were
oated overnight with a monoclonal antibody specific to
uman IFN-g (Mab 1-D1K; Mabtech, Stockholm, Swe-

den). Mononuclear cell cultures were infected with re-
combinant vaccinia viruses expressing HIV-1 antigens
(Env, Gag, Pol, Nef) or control vaccinia virus. Infections
were carried out at an m.o.i. of 2:1 for 1 h at 37°C in

PMI 1 1% FCS. After infection, cells were washed
wice, recounted, and added to duplicate or triplicate

ells in medium containing 5% pooled human serum and
ncubated for 14 to 20 h at 37°C, 5% CO2. Depending

upon cell numbers, 5 3 104 or 1 3 105 cells per well were
seeded; identical numbers were added to all wells in-
volving the same effector cell populations. Plates were
developed using a secondary antibody to IFN-g
(Mabtech) coupled to biotin and an avidin–peroxidase
complex (Vectastain ABC; Vector Laboratories, Burlin-
game, CA). Spot-forming cells were enumerated on a
dissecting microscope and reported as SFC per 106

mononuclear cells (Larsson et al., 1999).

Surface antigen staining and phenotypic analysis

Expanded MNC cultures were analyzed for expression
of T cell markers CD3, CD4, and CD8; T-cell receptor a
and g chains; NK-associated markers CD16, CD56, and
CD57; and mucosal adhesion/retention marker CD103
(aEb7 integrin). Monoclonal antibodies used were as
follows: CD3–FITC, CD8–PerCP, CD56–FITC, TCRab–
FITC, TCRgd–FITC (Becton–Dickinson, San Jose, CA);
CD57–FITC (Pharmingen Becton–Dickinson); CD103–
FITC (Caltag Laboratories, Burlingame, CA); CD16-PE
(Coulter Immunotech, Hialeah, FL); and CD4-APC (ExAl-
pha, Boston, MA) (abbreviations for fluorochromes: FITC,
fluorescein isothiocyanate; PE, phycoerythrin; PerCP,
peridinin chlorophyll protein; APC, allophycocyanin).

Stained MNC populations were analyzed for expres-
sion of cell surface markers by flow cytometry on a
FACSCalibur instrument (Becton–Dickinson). Lympho-
cyte populations were gated based on forward and side
scatter and in some cases based on expression of the
CD3 surface antigen. Appropriate isotype controls (gen-
erally mouse IgG1) were used to set quadrant markers.
For three- and four-color analysis, electronic compensa-
tion for spectral overlap was set using MNC samples
stained with single-color reagents.
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